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ABSTRACT

In this report, we describe a statistical model for

characterizing the closely spaced object (CSO) resolution process.

A logic for CSO clustering which simulates the CSO detection
process is given. Measurement standard deviations for isolated

targets, resoLved CSO's, and unresolved CSO's are given. Results

of this report are useful for functional simulation ind per-

formance analysis for the CSO resolution problem. V
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I. INTRODUCTION

Resolution of closely spaced objects (CSO's) has been

a subject of interest for many years first in radar applications

and more recently with optical sensor applications. In our

recent involvement in the optical signal processing area, it has

often been necessary to obtain simulated signal processor outputs

from an optical sensor. Because a complete focal plane/signal

process (FP/SP) simulation is extremely complicated and time-

consuming to carry out, a statistical functional model which

simulates the above process is desirable.

In addition to the target signature which is a function

of target orientation, sensor viewing angle, FP geometry, etc.,

the FP/SP process depends on many random factors such as background

noise, target scintillation, sensor pointing error (determined

by IMU and perhaps also stellar update, if available), receiver

noise, etc. Functional models for most of these factors are

available.* The only function which has not been modeled pertains

to the process of resolution of closely spaced objects (CSO's),

although the CSO problem itself and the performance of COO resolu-

tion algorithms have been studied in considerable detail, [l)-[10].

The purpose of this report is to present a functional model for

the CSO resolution process.

*For example, the SATIN program of Teledyne Brown Engineering,
Huntmville, AL, and the FASSIM of MDAC, Huntington Beach, CA.
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FI
A CSO functional model should consist of elements illu-

strated in Fig. 1.1. Notice that the CSO classification logic

simulates the CSO detection process while the rest of the model

simulates the metric and radiometric estimation errors in a CSO

environment. These two procedures will be discussed in Section

2 and 3, respectively.

We emphasize that a functional model is a statistical

simulator of the actual process. Such a model can never be made

flawless because many processes can not be characterized with a

parameterical statistical model. in some limited simulation

studies (especially the metric measurement accuracy portion),

we have obtained reasonable agreement with the functional model.

We therefore believe that this model provides a good starting point

for use as a signal processor simulator or to give analytical

expressions for performance evaluation purposes.

Because our current involvement in the signal pro-

cessing area has concentrated on the optical case, discussions

in this report are centered around the resolution process for

optical signals. It can be easily shown however, that this model

can be extendad to the radar case (in both range and angle domains)

in a straightforward manner.
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II. CSO CLASSIFICATION LOGIC

2.1 CSO Resolution Probability

The probability of correctly identifying the number of

targets in a CSO cluster has been reported in several simulation

studies, e.g., [3]. Roughly speaking, if the separation between

targets is less than half of the detector width, the probability

of identifying the existence of multiple targets is very small.

If the separation is more than one detector width and the signal

to noise ratio in 10 or higher, the probability of identification

is very high while noticeable metric measurement degradation

persists until the separation is greater than two detector widths.

When the separation is between half to one detector width, the

probability of CSO recognition is a function of separation and

individual signal-to-noise ratio. Since an analytical expression

for this probability does not exist, a precise functional model

will include a numerical table containing resolution probabilities

for a wide range of parameter values. The probability of recogniz-

ing a two-target CSO obtained from Monte Carlo simulation for

several CSO configurations was shown in [3]. When the signal-to-

noise ratio is high however, a straight lire between zero probability

at half a detector width separation and unity probability at one

detector width separation appears to be a good approximation for

the resolution probability. I
I
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In summary, let Pij denote the probability of resolving

target i from target J; one may use

1 dis >_ 1 DW

Pij" f(dl'SNRi'SNRj) DW < dij I DW (2.1)

0 dij ! DW

where DW - detector width i

dij - angular separation between target i and target j

SNRk - voltage signal to noise ratio of the kth target (>10).

For high SNR, one may approximate f(.,.,.) with

f(dijSNRiISNRj) - 1 - 2DW " (2.2)

We note that when SNR is low, the probability of false

CSO (i.e., deciding that two targets are present when in fact there

is only one target) may become appreciable and should also be

taken into account. The probability of false CSO can be reduced

however, at the expense of probability of CSO detection (see the

results of Ref. (31). The probability of CSO detection and the

probability of false CSO as functions of the target separation in

detector widths are dependent upon the thresholds. Beyond the one

detector width separation point, one can reduce the false CSO rate

without reducing the probability of CSO detection. A more elaborate

CSO functional model should Include curves like those of Ref. [3].

S...... ... • ..... . . . . " ' - • "r • "1 ' ' I • • p I !' m • •1 I I Ij , m n



2.2 CSO Clustering Logic

Civen the angular locations of a set of targets, their

pair-wise resolution probability can be evaluated using the above

model. When a target is found to be resolved, the metric and

radiometric measurements on this target are the true target loca-

tion and amplitude, respectively, plus noise simulated by random

numbers with known variances. When a target is unresolved, the

centroid of unresolved targets is computed and the measured centroid

is the true centroid corrupted by noise. The reported radiometric

measurement will be the total signal amplitude at the true centroid

location corrupted by noise. In the following, we describe a

method for determining clusters of unresolved objects.

1) Two targets are called connected if they are

unresolved.

2) Two targets are completed resolved if their

separation is greater than two detector widths. If a

target is completely resolved from all its neighboring
targets, it is called an isolated target.

3) For two targets with their separation between

1/2 and 2 detector widths, they are either resolved or
unresolved. For separation between 1 and 2 detector
widths, they are resolved, but their metric and radio-
metric measurements must be degraded from that of an

isolated target, For deciding on two targets with

separation between 1/2 and 1 detector widths
(i.e., 0 < P < 1), draw a uniform random number between

ii



0 and 1. If this number is less than f(d i), they are

resolved, otherwise they are unresolved. Metric measure-

ments for resolved targets oatained this way must be

degraded.

4) A cluster of objects are completely unresolved, if

all objects in the cluster are mutually connected.

5) Each completely unresolved cluster will result in a
centroid representing the metric location of all targets

in the cluster.

An example of the above method is illustrated in Fig.

2.1. Notice that one centroid will be reported for each of the

unresolved CSO clusters in Fig. 2.1, i.e., clusters 234, 345, 56,

68, and abcd. Each will have a centroid computed using true target

amplitudes and locations# The measured centroid is the true

centroid corrupted with noise samples. The target radiometric

measurement is the combined signal amplitude at the centroid

location corrupted with noise samplos. The centroid and radio-

metric measurement computation will be discussed in the next

section.

Finally, we remark that computer implementation of the

above procedure is an interesting and artful subject. In the

Appendix A, we present an algorithm and the IFTRAN listing of this

algorithm which implements the CSO clustering logic.

.7
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0 .5 1 1.5 2 Detector Width (DW)

& Isolated Object: 1 (d > 2 DW's)

A Resolved CSO's: 7 (due to random draw)
9 (d > 1 DW)

A Unresolved CSO's:

A.Separationo < .5 DW:

234, 345, abcd

A Separations between .5 and 1 DW,
connected duo to random draw:

56, 68

Fig. 2.1 CSO Classification Logic Illustration



III. CSO MEASUREMENT ACCURACY

3.1 Signal Model

Before we proceed to discuss the metric and radio-

metric measurement accuracy, we first establish notations and

conventions useful for characterizing the signal process. We

note that numerous studies have been devoted to understanding the

optical signal process, see for example, [I] and [9]. These studies

concluded that an additive Gaussian noise model is a good

approximation for the background limited case. This is the model

we will adopt in this report.

Let +(t) denote the optical pulse shape appearing on

the focal plane. The signal at the detector output is the con-

volution of s +(t) with the detector impulse response. We will

use a rectangular pulse shape to denote the detector impulse

response. The length of the rectangular pulse is called the

"detector width". Let e(t) denote the pulse shape at the detector

output, for a symmetric pulse shape the matched filter impulse

respconse is also s(t). The matched filter output is therefore

p(t) m/s (T)s(t-T)dT (3.1.1)

where pit) is also the signal autocorrelation function of s(t)

which is symmetric and contains unit energy, i.e.,

9



I (t) 12dt = 1 (3.1.2)

Notice that we have used the notation "t" 'to denote the

independent variable for the signal process. It denotes "time"

in radar signals. For optical signals, it denotes "angle". We

assume that the in-scan and cross-scan angle directions are

orthogonal and can be treated independently.

We next define the root-mean-square (RMS) "bandwidth"

(or beamwidth). The RMS bandwidth of a waveforem s(t) is the

square root of the second central moment of P(iw), i.e.,

8 • RMS "bandwidth"
(3.1.3)

f (w-w) 21p (iw) Idw

where • is the mean of IP(iw)l

P(iw) is the Fourier transform of p(t)

p(t) is the autocorrelation function of s(t).

From (3.1.3) it can be shown that the square of the RMS

bandwidth (or beamwidth) is equal to the negative of the second

* derivative of ptt) evaluated at t-0, i.e.,

2
0(3.1.4)

•" 10



This relation will be used in later derivations.

It is often convenient to represent P(t) using a

Gaussian shaped function. In this case,

'2 2
P~t) t'/c (3.1.5)

The Fourier transform of P(t) is

-a 2 W2/2
P(iw) 2ir Oe / (3.1.6)

2the second central moment of P(iw) is 1/0 and we can

rewrite p(t) as

2 2
P(t) - e•"0 /2 (3.1.7)

where B is the RMS bandwidth (beamwidth).

We now discuss the metric and radiometric measurement

accuracy for isolated targets, resolved targets, and unresolved

CSO's individually below.

3.2. Isolated Targets

An isolated target is a target free from interference

induced by nearby targets. Its metric measurement accuracy is

well-known and represented by

11i
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AG (3.2.1)
0 SNR

where A0 is the sensor angular resolution and is equal to the

inverse of the root-mean-square beamwidth of the detector output

to a unit strength point source.

Similarly, the fractional signal amplitude (radiometric)

measurement accuracy is inversely proportional to signal to noise

ratio, i.e.,

-a 1 (3.2.2)

where a is the signal amplitude.

3.3 Resolved CSO's

Metric measurement accuracy for resolved CSO's degrades

from that for isolated targets. Assuming that the dominant

degradation comes from the closest target, we will therefore

only have to consider the two target case. Let D(T) denote the

degradation factor for a separation of T; one obtains

0 U c o D(T) (3.3.1)

where a is given in (3.2.1) and ae is the degraded metric

measurement accuracy. The degradation factor D(T) is a function

of the signal autocorrelation function. The exact expression

for D(-c) is very complicated:

12
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11/2
y (3.3.2)

where

x - 1 - P(r)

x - 1 + P(C)

x 3 - (r) 2/02

X 1 + (T)/ 2
ml- - ()S

y - (x 1X5-x 3 ) (x 2 x4 -x 3 )

2 - (RMS bandwidth)2 --

The above expression can be obtained using the Cramer-Rao bound

analysis illustrated in (1], (23, (7], [8) and (9]. If the signal

autocorrelation function is Gaussian-shaped (eq. (3.1.7)), then

the expression for D(T) can be considerably simplified to obtain

1

D(T) - l(l+' P ( (3.3.3)

1 2 (T))2 T-4 4P (T) 44

Similarly, the standard deviation of the degraded

radiometric measurement, ar' can be expressed as

or a •aDa(T) (3.3.4)

A general expression for D (T) is as follows:
a1

D (T) - (3.3.5)a

13
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where x 3, x4 , and x5 are the same as those defined for the

degradation factor D(T) in Eq. (3.3.2).

For a Gaussian-shaped p(T), the Da (T) becomes
1

D''2 inl(~ 2 T4 4  2, T
Da() -"(IT28 + T 4S4 (2T)•

D a 2 B4 4 2  (3.3.6)

where p(r) in defined in (3.1.7).

The above gives the metric and radiometric measurement

accuracy for the resolved CSO's. These formulas are obtained

using the Cramer-Rao bound analysis. It has been observed that

for targets separated by more than one half detector width, the

performance of the maximum likelihood estimators is very close

to that predicted with the Cramer-Rao bound, see for example [3]

and (7]. Furthermore, the estimate is unbiased. We therefore

believe that the above equations give a close indication of the

actual performance.

3.4 Unresolved CSO's

For unresolved CSO's the centroid based upon the true

signal amplitudes and locations and the combined signal amplitude

at the centroid location will be computed. These quantities are

*: then corrupted with noise samples to simulate metric and radio-

* metric measurements for unresolved CSO's. This section gives

formulas for computing the true and noisy centroids and signal

Z1



amplitudes. Notice now that the target metric and radiometric

measurements have both bias and random errors.

Let (ai,Ti), i-l,...,N denote amplitudes and locations

of unresolved CSO's arranged in either the in-scan or cross-scan

direction. The matched filter output without noise is

r(t) - aip(t-Ti) (3.4.1)

where P(t) is the signal autocorrelation function. The centroid

of r(t), F, in then t r(t)dt
f t (3.4.2)
fr(t)dt

Approximating p(t) with a Gaussian pulse shape, one obtains the

following expression for E,

S= • (3.4.3)
iai

We next consider the estimation accuracy. The received

noisy measurement is

i(t) - r(t) + n(t) (3.4.4)

where n(t) is Gaussian-white with variance No.

15



It is well-known that the Cramer-Rao bound on estimating

t for problems defined by (3.4.4) is

.- 34.5)

r

where 1-

SNR (voltage) signal-to-noise ratio

Ai I Ir(t)II/Vf

IrIt)ill - square root of signal energy

Or - root-mean-square bandwidth of r(t).

Let pr(r) denote the autocorrelation function of r(t); then

.. Mr (t)r(tT)dt aiajp(T4Tij)
r IIr(t) 1,2 f llr(t)1l2

(3.4.6)

where

'tj *Li- TjI

p(1) - autocorrelation function of &Wt)

and

I lr(t)i 2  -I' aiajp(,.ij) (3.4.7)

16
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Tho root-mean-square bandwidth of r(t), r isr

r - r(0))1/2

where r (T) is the second derivative of the autocorrelation function

Pr() , i.e.,

( a2 a i0 T+Tij) C3.4.9)r . lr(t )112 1

Substituting the above results into (3.4.5) one obtains

2. (3.4.10)
SNR iSNRj l(Tj

where SNR1 is the signal-to-noise ratio of the i-th signal. For

a Gaussian shaped p(T), one has

2~ 22
-r) - -(1-T12- 2)6 T /2 (3.4.11)

where 8 is the root-mean-square bandwidth of s(t). Finally, the

centroid estimation accuracy is

1T 2 . 2 /2 1/2 (3.4.12)

2 T2 2 i17-'±j )e"j

17
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With the above development, it is straightforward to

obtain equations for radiometric measurements. The radiometric

measurement for an %varesolved CSO cluster is the combined signal

amplitude at T corrupted with noise. The combined signal amplitude,

denoted a , at E is

ac - r(t) (3.4.13)

where r(.) in given in (3.4.1) and E is given in (3.4.2) (or

(3.4.3)). The standard deviation on measuring ac is

a
T (3.4.14)

where SNR is the same signal-to-noise ratio used in (3.4.5), i.e.,

SNR = l r(t) l (3.4.15)

- [i •SNRiSNRjP(Tij)]

where SNRi is the signal-to-noise ratio of the i-th signal and

Tijl'ri-Tj I.

We note that when we use centroid location and amplitude

to represent a group of targets, both location and amplitude

estimates are biased with respect to each target, for example

18
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b , Ti-t (3.4.16)i
and

ba - i - ac (3.4.17)

where b T and ba ± are location and amplitude biases of the ith
target, respectively. 11 one assumes a Gaussian shaped auto-
correlation functions then for the two-target CSO came one obtains

the location bias errors

b "(3.4.18)

T1  R+l

RX (3.4.19)
b 2 R+l

and the amplitude bias errors

bal 2 /2 2 2.2 2.

'Z (1 ' (R+ ) 1 e 'R Z /2(R+l) (3.4.20)

S&2 e- 12 /2(R+ 1)2  R 2t / 2 (R+l) 2 (3.4.21)_a-- -R a+ (1-e'2)( . .1

19
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where

R a 1/a2

The above equations can be easily extended to the multiple-target.

CS) case..

20



IV. NUMERICAL EXAMPLE

In this section, we will illustrate the CSO measurement

accuracies for a two-target CSO case using the results of the

previous section. We will assume that the single target matched

filter output (or, the signal autocorrelation function) follows

the Gaussian-shaped function. Furthermore, we use the conventional.

rule-of-thumb in which a signal to noise ratio of 10 results in

an angle-splitting ratio of 10 (i.e., measurement accuracy is one

tenth of the detector width), this results in detector width

DW - 1/8.

We summarize pertinent measurement accuracy equations

to be used in this section as a handy reference.

1. Target Location Estimation

1.. Estimation Standard Deviation

1.1.1 Point Target:

SSNR SNR

1.1.2 Resolved CSO (Degradation Factor):

D(t) - 2)42

21
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where

- •cparation

"" -•2/2
P e

t1.1.3 Unresolved CSO (Centroid Degradation Factor
For A Two-Target CSO)

2 22 /2
[l+R +2R(I-t )a- .

where SNR

RNR

2

1.2 Estimation Bias (Two Target Case Normalized With
Respect to 1/0):

= R +-- l

b RD.
Ir2

2. Target Amplitude Estimation

2.1 Estimation Standard Deviation

2.1.1 Point Target:
a 1

Nr-Ra2

22 j2
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i ! -

2.1.2 Resolved CSO (Degradation Factor):

D.l_(z+1oM
aD (t - 2 2 42

2.1.3 Unresolved CSO (Centroid Degradation Factor For A
Two-Target CSO)%

D ( r 1 i1/2
_I+R2+2Re L2/2

2.2 Estimation Bias (Two Target Case);

ba- 1. 2/2(R+l) 2 1 -R2 2/2(M+ 1) 2

a1

ba * -R *L2 /2(R+1)2 + ( 2L-R22/2(R+) 2)

a2

The metric and radiometric measurement accuracies for

a two-target CSO case are illustrated in Figs. 4.1 and 4.2,

respectively. In Fig. 4.1(a), we show the metric estimation

random error degradation factor versus target separation in

detector widths. When two targets are sopirated by more than one

detector width, they are always resolved (provided that the SNR's

are at least 10) and their location estimation error grows larger

as the targets get closer. When two targets are closer than 1/2

23
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50 EQUAL INTENSITY TARGETS, RANDOM ERROR ONLY.

SPARTIALLY RESOLVED

10

S� .MIT OLVED

S$ • "ZNDZVIDUAL 18)

ON OI OBTAINED WITH

ESTMATON PROBABILISTIC WEIGHTING

0 .5• 1 1.5 2.0

Separa=tion in Detector Width

1. ROB BIAS A1D RANDOM ERqRORS 6 EQUAL AMPLITUDR TARGETS

~0 B~ NR 10

I(b) 04-1

0 .5 1 1.5 2.0

separation in Detector Width

Fig. 4.1 CSO Metric (Target Location) M4easurement Accuracy
For a Two-Target Case
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EQUAL INTENSITY TARGET, RANDOM ERROR ONLY
500 -

PARTIALLY RESOLVED
0 100 RESOLVED

m • 50

UNRESOLVED (a)

S 10 - % INDIVIDUAL

5 TARGATZNUD SITH
1 FITXHATION OamDWT

"" - --- PROBABZLI$TIC WEIGHTING
.3 1 _ I I I I I I , I

0 .5 1 1.5 2.0

separation in Detector Width

2.
81 DIAS AND RMNDO ERROU R EQUAL AMPLITUD2 TARQXTJ

(b)

l'I

11 .0__ 1 1_ 10
• S i " ' ' 5 w , 1 u ' ' ' I *' '

0 t5 1.0 1.5 2,0

Separation in Detector Width

Fig. 4.2 CSO Radiometric (Target Intensity) Measurement Accuracy
For a Two-Target Case
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detector width, they are almost always unresolved and a single

target is reported with its location being the centroid of these two

targets. Because a combined two-target pulse will have a higher

signal-to-noise ratio, the centroid estimation results in smaller

random errors. When two targets are separated between one half

and one detector width, they are sometimes resolved and sometimes

unresolved. The curve in this region is obtained by combining the

resolved and unresolved cases with probabilistic., weightings. in

Fig. 4.1(b), we compute the root-sum-square of the bias and the

random errors. Recalling discussions of the previous section,

the target location (and amplitude) estimate is unbiased when

the targets are resolved. The bias term is therefore only included

for targets separated by less than one detector width. Results of

Fig. 4.1 seem to indicate that the position estimation accuracy

improves when targets are closer than a certain distance. This

is due to the fact that only one target is reported for a two-

target CSO, in this situation the random error decreases as the

combined signal to noise ratio increases and the bias error also

decreases as target separation decreases. However, the estimate

of the number of targets is in error which could degrade the scan-

to scan correlation and tracking functions. This observation

reinforces the fact that one must consider both detection and

estimation processes in the CSO resolution problem. Figure 4.2

illustrates the amplitude estimation accuracy for a two-target

CSO case. Most observations discussed for the position estimation

26



above still hold except that the bias error for the amplitude

estimate increases as target separation decreases (compare 4.1(b)

with 4.2(b)). When two equal intensity targets are almost co-

located, the amplitude estimate bias error equals the target

amplitude provided that the closer target does not block the

farther target.

2.
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V. FINAL REMARKS

In this report, we have described a procedure for

determining (1) CSO clusters and (2) metric and radiometric

measurement accuracies for isolated, resolved, and unresolved

targets. Target metric and radiometric measurements simulated

this way (Fig. 1.1) include errors representative of the sensor and

signal processor. The model discussed in this report is useful

for functional simulation and error analysis. A numerical

example illustrateing target parameter estimation accuracy for a 1

two-target CSO case is given. These results also illustrate the

transition between the completely resolved and unresolved regions

for CSO targets.

2

I'

*1

*1

I.
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APPENDIX A: AN ALGORITHM FOR IMPLEMENTING THE CSO CLUSTERING LOGIC*

In this appendix, we will give an algorithm for imple-

menting the CSO clustering logic. Perhaps the best way of explaining

this algorithm is to use examples. Consider the case that a group

of 5 targets is being considered as potentially forming a CSO

cluster. Let these five targets be referred to as target number

1 thru 5. After applying the target connection rules described

in Section 2.2, we obtain the following. CSO matrix:

1 0 1 0 10 1 0 0 0
1 0 1 0 0 (A.1)
0 0 0 1 0
1 0 0 0z 1

The (i,j)th entry denotes the "status" between target i and target

J. For example, the (l,3)th entry is "1"1 this incidates that

target 1 and target 3 are connected. A "0" entry denotes that two

respective targets are resolved. Notice that all targets are

connected, to themselves (the diagonal terms). By visually examining

this matrix, one can immediately conclude that targets 2 and 4 are

completely resolved, targets 1 and 3 and targets 1 and 5 form two

two-.target CSO's. An algorithm for processing this matrix can

proceed as followsii

rTis implementati)n ris due to L. Youens to whom we are very grateful.
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1) At column one, search trhough the row elementsa one
first finds target 1 is connected with target 3.

2) Moving down again, one finds that target 5 is also
connected with target 1. But target 5 is not connected

with target 3, so targets I, 3, and 5 do not form
a coMlete connection.

3) Processing column two, one finds that target 2 is

completely resolved.

4) Processing column three, one finds that targets 3 and
1 are connected. This result gives a redundant

connection and this must be cores examined to avoid

multiple measurements reported on the Ame CSO cluster.

5) Processing column four, one finds that target 4 is

completely resolved.

6) Processing column five, one finds that target 5 is

connected with target 1.

The output of this algorithm will report four measure-

ments, 13, 2, 4, and 15. In the above procedure, when one processes

column i, one uses the (i,i)th element as the base element for

comparison.

As a second example, we apply the above algorithm to

process this following matrix
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0 1 0 o1 •

1 0 1 0 1 (A. 2)
0 0 0 1 0 ,

One finds that targets 1, 3, and 5 form a complete connection. In

this case, this algorithm reports 3 measurements consisting of

135, 2, and 4.

The following IFTRAN listing will process the i-th

column of a CSO matrix:

C
C XP, TARGET CSO MATRIX (N,N)

C NXO # OF TARGETS IN A CSO CLUSTER

C IX(l) TO IX(NX), TARGET INDICES INTO KP ARRAY
C

DO (I a 1, N)

NX a 1

IX(l) -

DO (K- 1, N)
C

C KEY, SET TO 1 IF MATRIX ELEMENT ZERO OR IF TARGET
C ALREADY IN IX ARRAY

C
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KEY - 0

DO (L* 1, NX)
IF (KP(IX(L),K) .EQ. 0

.OR. IX(L) .EQ. K ) KEY - 1

END DO

IF ( KEY .EQ. 0
NX - NX + 1

IX(NX) - K
END IF

END DO
C
C OUTPUT CSO CLUSTER

C

*

END DO

Notice that the I is the column index and K is the row indox. Other

key parameters are defined in the comment statements. Using this

code to process the (A.2) matrix, one obtains the following results:

I-l, NX-3, IX(i)-i

IX (2) .3

IX (3)-5

I'2, NX-m, IX(l)-2

1-3, NXw3, IX(l)-3
IX(2)-1

IX(3)m5
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I-4, NX"1, IX(1)=4

1-5, NXl3, IX(l)-5

IX(2)-1
IX(3)-3

Clearly, the 3-target CSO is reported three times. A simple

cross check can quickly eliminate the redundant clusters.
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